PIXIE: The Primordial Inflation Explorer

Al Kogut GSFC

History of the Universe

Standard model leaves many open questions

NASA Strategic Guidance: 2010 Astrophysics Decadal Survey

Top Mid-Scale Priorities #1: Exoplanets (TESS) #2: Inflation

Use cosmic microwave background as backlight for thermal history of universe

Panel		Question	
	Cosmology and Fundamental Physics	CFP1	How did the universe begin?
		CFP3	What is dark matter?
		CFP4	What are the properties of neutrinos?
Ø	Galaxies Across Cosmic Time	GCT1	How to cosmic structures form and evolve?
		GCT4	What were the first objects to light up the universe and when did they do it?
9	Galactic Neighborhood	GAN1	What are the flows of matter and energy in the circumgalactic medium?

Inflationary Paradigm Quantum Physics Meets Cosmology

Testing Inflation with CMB Polarization

CMB Polarization

Why Study CMB Polarization?

Demonstrate inflation as physical reality

Trace evolution back to single quantum system Oldest information in the universe

Measure inflationary energy scale

10¹⁶ GeV : Grand Unification theory Trillion (!) times higher energy than Higgs boson

• Observable "Theory of Everything"

LIGO: Classical gravitational radiation CMB: Proof that gravity obeys quantum mechanics

Scalar Field Amplitude Φ

Requirements for Detection

- Photon-Limited Sensitivity
- Accurate Foreground Subtraction
- Immunity to Instrumental Effects

PIXIE Nulling Polarimeter

Zero means zero: No fringes if sky is not polarized

Frequency Coverage

Phase delay L sets channel width $\Delta^{\langle} = c/L = 14.41 \text{ GHz}$ Number of samples sets frequency range $\langle_i = [1, 2, 3 \dots N/2] * \Delta^{\langle}$

400 Frequency Channels across 7 octaves

- 30 GHz to 6 THz
- 14 GHz frequency resolution Legacy dataset for far-IR astrophysics

PIXIE Mission

PIXIE and Polarization

Complement Ground-Based Efforts

- Large angular scales (2 < ℓ < 300)
- Legacy dust foreground
- Legacy data for mm & sub-mm calibration

Definitive test for large-field inflation

CMB sensitivity 70 nK per 1° pixel Limit r < 2 x 10^{-4} for inflation amplitude

Determine neutrino mass scale

Characterize astrophysical foregrounds

PIXIE and Absolute Sky Spectra

On-Board Calibrator Measures Unpolarized Sky Spectrum

Calibrator stowed: Polarization only

Calibrator deployed: Spectral distortions! $P_{Lx} = \frac{1}{2} \int \left(E_{Cal,y}^2 + E_{Sky,x}^2 \right) + \left(E_{Sky,x}^2 - E_{Cal,y}^2 \right) \cos(z\omega/c) \, d\omega$ $P_{Ly} = \frac{1}{2} \int \left(E_{Cal,x}^2 + E_{Sky,y}^2 \right) + \left(E_{Sky,y}^2 - E_{Cal,x}^2 \right) \cos(z\omega/c) \, d\omega$ [Calibrator-Sky]Spectral Difference

Partially-assembled blackbod calibrator

Like COBE/FIRAS, But 1000x More Sensitive!

Precision Survey for Extragalactic Backgrounds

Spectral Distortions: Structure Formation

Integrated signal from CMB photons scattering off relativistic electrons

Dominated by intracluster gas in groups and clusters

High signal-to-noise detection

- Monopole: 194σ detection
- Relativistic correction: 11σ detection

Mean thermal energy in electrons Integral constraint on feedback

Dominated by faint unresolved sources

Spectral Distortions: Dark Matter Annihilation

de Vega & Sanchez 2010

Cosmic Infrared Background

PIXIE noise is down here!

Knox et al. 2001 Fixsen & Kashlinsky 2011 Tucci et al 2016

Far-IR Tomography

Intensity Mapping with C+, N+, CO lines

Low spatial resolution Integrated emission from many sources

Multiple frequency bins Multiple redshift slices

Red-shifted far-IR lines C+ 158 um \rightarrow Star formation rate CO ladder \rightarrow Cold gas reservoir

Cross-correlate PIXIE with redshift-tagged galaxy surveys

- Track star formation vs redshift
- 5—10% redshift bins at z=2—3
- Compare to continuum CIB

Switzer 2017

Radio Synchrotron

PIXIE Improvements to Synchrotron Model

- Polarization amplitude in faint regions
- Zero level for intensity + polarization

Test for local-bubble synchrotron model

Multiple Decadal Goals in One MIDEX Mission

Science Goal	PIXIE Measurement
Inflation	Polarization B-modes
Neutrino Mass	Polarization E-modes
Reionization	Polarization E-modes
Dark Matter	Spectral Distortion (y)
Large-Scale Structure	Spectral Distortion (µ)
Star Formation History	Far-IR Intensity Mapping
Radio Background	Synchrotron intensity + polarization

Unique Science Capability

A Non-Cosmological Problem

Will a future Congress fund a \$1B Inflation Probe? Low-cost alternative within existing NASA budget line

NASA Explorer Program

Small PI-led missions

- 11 full missions proposed Dec 2016
- \$250M Cost Cap + launch vehicle

PIXIE submitted with mature technoloigy

- All technology TRL 6 or higher
- Cost & schedule based on flight missions

Step-1 proposal submitted Dec 2016

- Phase A down-select "Summer 2017"
- Phase B down-select late 2018
- Launch 2023

Submitted in response to the Astrophysics Explorers Program Announcement of Opportunity #NNH16ZDA0100

December 15, 2016

NASA's Goddard NARA Space Flight Center

Principal Investigator: Dr. Alan Kogut

thorizing Official: Bonnie G. Norris, Chief New Opportunities Office (MIS/I's GSF

Coming Soon From a Spacecraft Near You!

Sensitivity the Easy Way

Big Detectors in Multi-Moded Light Bucket

$$NEP_{photon}^{2} = \frac{2A\Omega}{c^{2}} \frac{(kT)^{5}}{h^{3}} \int \alpha \epsilon f \frac{x^{4}}{e^{x} - 1} \left(1 + \frac{\alpha \epsilon f}{e^{x} - 1} \right) dx$$
Photon noise ~ $(A\Omega)^{1/2}$
Big detector: Negligible phonon noise
 $\delta I_{\nu} = \frac{\delta P}{A\Omega \ \Delta \nu \ (\alpha \epsilon f)}$
Signal ~ $(A\Omega)$
Big detector: S/N improves as $(A\Omega)^{1/2}$

PIXIE polarization-sensitive bolometer

Sensitivity 70 nK per 1° x 1° pixel

PIXIE Detectors

Demonstrate multi-moded single-polarization photon-limited detectors

PIXIE Photon Noise

PIXIE Photon Noise

Systematic Error Control

Multiple Instrumental Symmetries

Multiple Redundant Symmetries Allow Clean Instrument Signature

Systematic Errors II Chain Multiple Nulls Together

Multiple levels of nulling reduce systematics to negligible levels without relying on any single null

Blackbody Calibrator

Mirror Transport Mechanism

Engineering prototype

Demonstrated performance exceeds requirement by factor of ten

Translate ±2.54 mm at 0.5 Hz Optical phase delay ±1 cm Repeatable cryogenic position

Cryogenics

• 0.1 K ADR

Foreground Comparison

