The Extragalactic Radio Background
Challenges and Opportunities

Al Kogut
Goddard Space Flight Center
Extragalactic Backgrounds

![Graph showing energy density vs. frequency for different wavelengths: Radio, Microwaves, Infrared, Optical, X-ray, and Gamma-ray. The y-axis is labeled as Energy Density \(E_V \) (nW m\(^{-2}\) sr\(^{-1}\)). The x-axis represents Frequency (Hz).]
Early Background Estimates

\[T_{\text{ex}} \text{ From Spectral Index Variations} \]
\[T_{\text{ex}} = 30-80 \text{ K at 176 MHz} \]
\[= 3-6 \text{ K at 408 MHz} \]

Assumes extragalactic component has different spectral index than galaxy

3D modeling of full-sky surveys
Fit 408 MHz survey:
- Thin disk + thick disk + spiral arms
- Extragalactic component

\[T_{\text{ex}} = 6 \text{ K at 408 MHz} \]
(assumed value, not fit)
(includes 2.7 K CMB)

Phillips et al 1981
Beuermann et al 1985
Monopole Component of the Radio Sky

Coldest pixels ~ 11 K across much of radio sky
Consistent with isotropic source
Point sources contribute ~ 2—3 K
Where does the rest come from?

408 MHz survey
Stereographic
Monopole Component of the Radio Sky

Coldest pixels ~ 11 K across much of radio sky

Consistent with isotropic source
Point sources contribute $\sim 2\text{—}3$ K
Where does the rest come from?

408 MHz survey
Stereographic

Linear scale chosen to highlight isotropic component
Simple Background Estimate

Recall that 408 MHz survey has pixel noise \(\sim 1 \) K

Histogram of coldest patch has
- Peak at 13.6 K
- Gaussian width 0.65 K

Beware of bias: Coldest pixels include downward noise fluctuations

Subtract CMB 2.7 K to get
\[T_{\text{ex}} \sim 11 \] K
Advent of Precision Data

Problem: Surveys from 60's to 80's not intended for background detection
 Calibration errors 5–20%
 Zero level errors of many K
Not a problem for bright structures, but difficult to nail down fainter background

ARCADE-2 sky measurements
Compare sky to external calibrator
 • at multiple frequencies
 • using fully cryogenic instrument
 • from a balloon platform
 Gain error < 0.03%
 Zero level error < 10 mK
Monopole component detected in all radio surveys
Not dependent on ARCADE data alone

Question: Where does it come from?
Origins and Issues

Radio Background is ...

Extragalactic

Galactic

Nearby

Polarization
Far-IR corr

Distant

Unique Halo
X-ray limit

Discrete

Source Density
Far-IR corr

Diffuse

Source Amplitude
X-ray limit

Problems
Extragalactic Source Populations

Simplest solution: monopole component as integrated emission from discrete sources

Problem: Required faint populations exceed density of galaxies in Hubble UDF by factor of 100

Condon et al. 2012
Radio/Far-IR Correlation

Independent Check on Extragalactic Origin

Tight correlation between radio and IR emission
Use observed far-IR background to predict integrated radio emission from same galaxies

Predict $T_R \sim 1\text{—}2\text{ K at 408 MHz}$

- Consistent with radio source counts
- Too small to make up observed background

Dwek & Barker 2002, APJ, 575, 7
Franceschini et al 2001

Condon 1992, ARAA, 30, 575
Diffuse Extragalactic Emission

Could monopole be integrated emission from sources of low surface brightness?

Constraint from radio vs X-ray backgrounds

Radio emission from ultra-relativistic electrons

\[
N(E) = \kappa_e E^{-p}
\]

\[
I_\nu \sim \kappa_e B^{(p+1)/2} \nu^{-(p-1)/2}
\]

X-ray emission from inverse Compton scattering of CMB photons from **same** electrons

\[
I_\nu \sim \kappa_e \kappa_\gamma f(p)
\]

Singal et al 2010
Diffuse Extragalactic Emission

Could monopole be integrated emission from sources of low surface brightness?

Constraint from radio vs X-ray backgrounds

Radio emission from ultra-relativistic electrons

\[N(E) = \kappa_e E^{-p} \]

\[I_\nu \sim \kappa_e B^{(p+1)/2} \nu^{-(p-1)/2} \]

X-ray emission from inverse Compton scattering of CMB photons from same electrons

\[I_\nu \sim \kappa_e \kappa_\gamma f(p) \]

Frequency dependence sets \(p \)

Knobs to set amplitude

CMB sets lower limit

Singal et al 2010
Diffuse Extragalactic Emission

Could monopole be integrated emission from sources of low surface brightness?

Constraint from radio vs X-ray backgrounds

Radio emission from ultra-relativistic electrons

\[
N(E) = \kappa_e E^{-p}
\]

\[
I_\nu \sim \kappa_e B^{(p+1)/2} \nu^{-(p-1)/2}
\]

X-ray emission from inverse Compton scattering of CMB photons from same electrons

\[
I_\nu \sim \kappa_e \kappa_\gamma f(p)
\]

Large magnetic field B required to avoid over-producing X-rays

\[B > 1 \ \mu G \]

Conflicts with B < 0.2 \ \mu G for IGM

Singal et al 2010
Galactic Halo

Model radio sky as disk + halo + anisotropic pieces
Halo diameter 28 kpc extends beyond solar circle
Explains why coldest patches are not at poles

Problem ...
Implies detectable halo
Not seen in survey of edge-on spirals
Where Are The Radio Halos?

Radio Properties of Typical Spirals
- Little or no extended emission
- Few cases of isolated spurs
- Halo contribution < 10% of disc

Axial Ratio Test: Compare Data to Model

Singal et al 2015
Remarkably tight correlation exists between radio and far-IR emission.

If high-latitude Galaxy is bright in radio, it should also be bright in the far-IR.

But it’s not ...

Two tests:

- DIRBE x canonical Radio/FIR ratio
- Scale observed radio/FIR to $|b|=90$

Obtain $T \sim 5K$ at 408 MHz: Too Small!
Local (Nearby) Origin

If we were inside spherical bubble with uniform field ...

- Predicted amplitude $\sim 400 \, \mu K$ at 23 GHz
- Typical polarization fraction $f \sim 0.25$
- Expect polarized quadrupole $\sim 100 \, \mu K$ (not seen)
Depolarization

The observed radio sky is strikingly depolarized

Although synchrotron emission is inherently highly polarized (fractional polarization $p \sim 0.7$), half the synchrotron sky shows $p < 0.05$.

Crude estimate:
- Simulate turbulent magnetic field
- Intensities add, polarizations cancel
- How many independent cells needed to depolarize?

Problem:
- Simulations show $>10^4$ cells required
- Mean cell diameter <0.05 pc
- Ratio of turbulent/mean field too high!
Fractional Polarization

In which we play with the denominator ...

Two problems:

- Faintest 50% of sky is depolarized
- Bright features more polarized than dim

Suppose we remove the isotropic part from the denominator of this equation ...
Fractional Polarization

In which we play with the denominator ...

\[
\frac{\text{Polarized Intensity}}{\text{Unpolarized Intensity}} = \text{Fractional Polarization}
\]

Problem solved?
- Fractional polarization now 10%—30%
- Broad overlap between bright/dim regions

Suppose we remove the isotropic part from the denominator of this equation ...
NOW what?

Having efficiently ruled out a number of "most plausible" origins, what comes next?

Diagram: Galactic and Extragalactic origins, with further subdivisions into nearby, distant, discrete, and diffuse categories. Problems include polarization, Far-IR correction, unique halo X-ray limit, source density, Far-IR correction, and source amplitude.
Future Directions

Low-frequency surveys have substantial uncertainty
Dominated by zero-level errors

ARCADE has small errors, but limited coverage
Synchrotron polarization not well mapped in faintest parts of sky

Solution 1: Map sky at frequency where sky temperature matches ground temperature

\[\nu \sim 120 \, \text{MHz} \]

\[T_{\text{sky}} \sim 300 \, \text{K} \]

Don’t need great angular resolution

Solution 2: Map sky at frequency where zero level is already well established

\[\nu \sim 3.15 \, \text{GHz (ARCADE)} \]

Improve ARCADE resolution & sky coverage

Solution 3: Nail down synchrotron amplitude and polarization
Faraday rotation \(\rightarrow\) Frequencies > 5 GHz
CBASS, PIXIE, ...
Parting Thoughts

Radio sky contains significant monopole
• Amplitude ~ 11K at 408 MHz
• Spectral index -2.6

What is it??

Looking for a (synchrotron) source that's
• Isotropic
• Depolarized
• Uncorrelated with far-IR / other tracers

But not unique to Milky Way
There are more things in heaven and Earth, Horatio, Than are dreamt of in your philosophy
Shakespeare (Hamlet)
Measurement Uncertainty

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Background Temperature</th>
<th>Zero Level</th>
<th>Gain</th>
<th>Absolute Uncertainty</th>
<th>Fractional Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 MHz</td>
<td>22,000 K</td>
<td>5000 K</td>
<td>5%</td>
<td>5100 K</td>
<td>23%</td>
</tr>
<tr>
<td>45 MHz</td>
<td>3400</td>
<td>250</td>
<td>10%</td>
<td>420</td>
<td>12%</td>
</tr>
<tr>
<td>408 MHz</td>
<td>11</td>
<td>0.9</td>
<td>10%</td>
<td>1.4</td>
<td>13%</td>
</tr>
<tr>
<td>1420 MHz</td>
<td>0.43</td>
<td>0.5</td>
<td>5%</td>
<td>0.5</td>
<td>116%</td>
</tr>
<tr>
<td>3.15 GHz</td>
<td>0.056</td>
<td>0.003</td>
<td>0.01%</td>
<td>0.003</td>
<td>5%</td>
</tr>
</tbody>
</table>
Origins and Issues

Radio Background is ...

Galactic
- Nearby
- Distant

Extragalactic
- Discrete
- Diffuse

Problems
- Polarization Far-IR corr
- Unique Halo X-ray limit
- Source Density Far-IR corr
- Source Amplitude X-ray limit
Radio Halo Model

Anisotropic Galactic sources

Simplified source distribution (viewed from Solar circle)

Simplified source distribution (viewed by external observer)

Singal et al 2015